4.6 Article

Cycling Behavior of Silicon-Containing Graphite Electrodes, Part A: Effect of the Lithiation Protocol

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 121, 期 34, 页码 18423-18429

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.7b05919

关键词

-

资金

  1. IMERYS Graphite Carbon

向作者/读者索取更多资源

Silicon (Si) is a promising additive for enhancing the specific charge of graphite negative electrodes in Li-ion batteries. However, Si alloying with lithium leads to an extreme volume expansion and in turn to rapid performance decline. Here we present how controlling the lithiation depth affects the performance of graphite/Si electrodes when different lithiation cutoff potentials are applied. The relationship between Si particle size and cutoff potential was investigated to clarify the interdependence of these two parameters and their impact on the performance of Si containing graphite electrodes. For Si with a particle size of 30-50 nm, Li15Si4 is only formed for the potential cutoff of 5 mV vs Li+/Li, whereas using a higher cutoff of 50 mV has no impact on the performance. For larger Si nanoparticles, 70-130 nm in size, Li15Si4 is already formed at 50 mV. However, in these larger particles only 70% of the Si initially participates in the lithiation, independent of the cutoff potential (5 or 50 mV), and the performance fades rapidly. For the highest tested cutoff potential of 120 mV, the contribution of larger Si particles to the specific charge of the electrodes was negligible, but for the smaller particles a stable and still significant Si specific charge was obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据