4.6 Article

Angular Deep Supervised Hashing for Image Retrieval

期刊

IEEE ACCESS
卷 7, 期 -, 页码 127521-127532

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2019.2939650

关键词

Image retrieval; quantization; supervised learning-based hashing; Softmax loss; A-Softmax; neural network; convolutional neural network

资金

  1. Innovation and Technology Fund (ITF) of Hong Kong Government, City University of Hong Kong [9440172]

向作者/读者索取更多资源

Deep learning based image hashing methods learn hash codes by using powerful feature extractors and nonlinear transformations to achieve highly efficient image retrieval. For most end-to-end deep hashing methods, the supervised learning process relies on pair-wise or triplet-wise information to provide an internal relationship of similarity data. However, the use of pair-wise and triplet loss function is limited not only by expensive training costs but also by quantization errors. In this paper, we propose a novel semantic learning based hashing method for image retrieval to optimize the deep features structure in the hash space from a perspective of angular view. Specifically, we proposed an angular hashing loss function that explicitly improve intra-class compactness and inter-class separability between features in hash space. Geometrically, angular hashing loss can be regarded as imposing hash constraints on hypersphere manifold. In order to solve the training problem on the multi-label case, we further designed a dynamic Softmax training strategy that can directly train the network using gradient descent method. Extensive experiments on two well-known datasets of CIFAR-10 and NUS-WIDE demonstrate that the proposed Angular Deep Supervised Hashing (ADSH) method can generate high-quality and compact binary codes, which can achieve state-of-the-art performance as compared with conventional image hashing and deep learning-based hashing methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据