4.5 Article

Oily bilge water treatment using DC/AC powered electrocoagulation

期刊

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ew00497a

关键词

-

资金

  1. US Office of Naval Research [N000141612210]
  2. U.S. Department of Defense (DOD) [N000141612210] Funding Source: U.S. Department of Defense (DOD)

向作者/读者索取更多资源

Bilge water is a complex oily wastewater that may contain a variety of contaminants and salts. Electrocoagulation (EC) recently emerged as an efficient process for bilge water treatment, but its energy cost and lifespan are primary challenges. This study compared the oil removal and energy consumption of both DC and AC powered EC units and investigated the effects of salinity for the first time. Different current densities, voltages, and operation modes (constant current and constant voltage) were investigated to understand the electrochemical kinetics of high salinity bilge water. Results showed that both DC and AC power sources satisfied the oil reduction requirement with over 99% oil removal and a high current density was found to be more efficient in oil removal. High salinity (e.g. 35 g L-1) could slightly improve demulsification during electrocoagulation by reducing the zeta potential. Different frequencies (0.25, 0.5 and 1 Hz) of AC power were applied to EC units and it was found that a low frequency was more efficient for oil removal. The results also showed that a constant AC was more efficient in maintaining the same performance with a less energy cost increment than the DC mode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据