4.5 Article

Excited-State Proton Transfer in Indigo

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 121, 期 10, 页码 2308-2318

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.6b11020

关键词

-

资金

  1. Fundo Europeu de Desenvolvimento Regional (FEDER) through Programa Operacional Factores de Competitividade (COMPETE)
  2. University degli Studi di Perugia
  3. Fundacao para a Ciencia e a Tecnologia (FCT), Portuguese Agency [PEst-OE/QUI/UI0313/2014]
  4. FCT [UID/QUI/00100/2013]
  5. SunStorage Harvesting and storage of solar energy, [POCI-01-0145-FEDER-016387,]
  6. European Regional Development Fund (ERDF), through COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (OPCI)
  7. national funds, through FCT
  8. LaserlabEurope EC's Seventh Framework Programme [284464]
  9. [SFRH/BPD/108469/2015]

向作者/读者索取更多资源

Excited-state proton transfer (ESPT) in Indigo and its monohexyl-substituted derivative (Ind and NHxInd, respectively) in solution was investigated experimentally as a function of solvent viscosity, polarity, and temperature, and theoretically by time-dependent density functional theory (TDDFT) calculations. Although a single emission band is observed, the fluorescence decays (collected at different wavelengths along the emission band using time-correlated single photon counting (TCSPC)) are biexponential, with two identical decay times but different pre-exponential factors, which is consistent with the existence of excited-state keto and enol species. The femtosecond (fs)-transient absorption data show that two similar decay components are present, in addition to a shorter (<3 ps) component associated with vibrational relaxation. From TDDFT calculations it was shown that with both Ind and NHxInd, the reaction proceeds through a single ESPT mechanism driven by an Arrhenius-type activation through a saddle point, which is enhanced by tunneling through the barrier. From the temperature dependence of the steady-state and time-resolved fluorescence data, the activation energy for the process was found to be, similar to 11 kJ mol(-1) for Ind and kJ mol(-1) for NHxInd, in close agreement with the values calculated by TDDFT: 12.3 kJ mol(-1) (Ind) and 3.1 kJ mol(-1) (NHxInd). From time resolved data, the rate constants for the ESPT process in dimethyl sulfoxide were found to be 9.24 X 10(10) s(-1) (Ind) and 7.12 X 10(10) (NHxInd). The proximity between the two values suggests that the proton transfer mechanism in indigo is very similar to that found in NHxInd, where a single proton is involved. In addition, with NHxInd, the TDDFT calculations, together with the viscosity dependence of the fast component, and differences in the activation energy values between the steady-state and time-resolved data indicate that an additional nonradiative process is involved, which competes with ESPT. This is attributed to rotation about the central carbon-carbon bond, which brings the system close to a conical intersection (CI). The CI is of the sloped type, where the seam is reached through an OH stretching vibration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据