4.5 Article

Observation of Morphology and Structure Evolution during Gelation of a Bis(Anhydrazide) Derivative

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 121, 期 37, 页码 8795-8801

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.7b06965

关键词

-

资金

  1. National Science Foundation Committee of China [51073071, 21072076, 51103057]
  2. Project 985-Automotive Engineering of Jilin University

向作者/读者索取更多资源

A new bis(anhydrazide) derivative containing cyclohexyl terminal groups (compound 1) was synthesized, and its gelation process was investigated. Compound 1 showed both thermal-induced gelation (T-gel) and sonication-induced gelation (S-gel) in alcohols. We investigated the gelation process of compound 1 in ethanol by different techniques. It was demonstrated that gelator 1 in ethanol underwent a transition from a clear solution through a turbid suspension to an opaque gel. Scanning electron microscopy (SEM) observations indicated that the turbid suspension consisted of separated clew-like spheres, connected spheres, and short nanorods, whereas the opaque gel consisted of fibers or bundles of fiber networks. Molecules packed loosely into an unknown phase in the spheres, whereas they packed tightly into a hexagonal columnar phase with a = 1.62 nm in the fibers. Intermolecular H-bonding between -C=O and-N-H was revealed to be the driving force for gelation, and the strength of the H-bonding became stronger in the fibers than in the spheres. We propose that the gel of compound 1 in ethanol consisting of fibers is a stable phase compared to the turbid suspension consisting of spheres or short nanorods, which is considered to be metastable. The kinetics of gelation of gelator 1 in ethanol under sonication suggest that the gelation process is a two-stage kinetic pathway with fractal values of 1.27 and 0.84. Our study hence provides new insights into the formation of fibers and the structural evolution of the gelation process and can be exploited to achieve a detailed understanding of gels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据