4.5 Article

Elucidating Potential Energy Surfaces for Singlet O2 Reactions with Protonated, Deprotonated, and Di-Deprotonated Cystine Using a Combination of Approximately Spin-Projected Density Functional Theory and Guided-Ion-Beam Mass Spectrometry

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 121, 期 33, 页码 7844-7854

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.7b05674

关键词

-

资金

  1. National Science Foundation [CHE 0954507, 1464171]
  2. CUNY Doctoral Student Research Grant
  3. Division Of Chemistry
  4. Direct For Mathematical & Physical Scien [1464171] Funding Source: National Science Foundation

向作者/读者索取更多资源

The reactivity of cystine toward electronically excited singlet O-2 (a(1)Delta(g)) has been long debated, despite the fact that most organic disulfides are susceptible to oxidation by singlet O-2. We report a combined experimental and computational study on reactions of singlet O-2 with gas-phase cystine at different ionization and hydration states, aimed to determine reaction outcomes, mechanisms, and potential energy surfaces (PESs). Ion-molecule collisions of protonated and dideprotonated cystine ions with singlet O-2, in both the absence and the presence of a water ligand, were measured over a center-of-mass collision energy (E-col) range from 0.1 to 1.0 eV, using a guided-ion-beam scattering tandem mass spectrometer. No oxidation was observed for these reactant ions except collision-induced dissociation at high energies. Guided by density functional theory (DFT)-calculated PESs, reaction coordinates were established to unravel the origin of the nonreactivity of cystine ions toward singlet O-2. To account for mixed open- and closed-shell characters, singlet O-2 and critical structures along reaction coordinates were evaluated using broken-symmetry, open-shell DFT with spin contamination errors removed by an approximate spin-projection method. It was found that collision of protonated cystine with singlet O-2 follows a repulsive potential surface and possesses no chemically significant interaction and that collision-induced dissociation of protonated cystine is dominated by loss of water and CO. Collision of di-deprotonated cystine with singlet O-2, on the other hand, forms a shortlived electrostatically bonded precursor complex at low E-col. The latter may evolve to a covalently bonded persulfoxide, but the conversion is blocked by an activation barrier lying 0.39 eV above reactants. At high E-col, C-S bond cleavage dominates the collision-induced dissociation of di-deprotonated cystine, leading to charge-separated fragmentation. Cross section for the ensuing fragment ion H2NCH(CO2-)CH2SS center dot was measured as a function of E-col, and the mechanism of charge-separated fragmentation was discussed. It was also found that the reaction of deprotonated cystine with singlet O-2 follows a similar mechanism as that of di-deprotonated cystine, but with an even higher activation barrier (0.72 eV).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据