4.5 Article

Synergistic Effect of Cavitation and Agitation on Protein Aggregation

期刊

JOURNAL OF PHARMACEUTICAL SCIENCES
卷 106, 期 2, 页码 521-529

出版社

WILEY
DOI: 10.1016/j.xphs.2016.10.015

关键词

monoclonal antibody; stability; protein aggregation; microparticles; biopharmaceutical characterization; particle size; adsorption; desorption

向作者/读者索取更多资源

It was recently reported that dropping induces protein aggregation due to the occurrence of cavitation. Agitation also causes protein aggregation. In this study, vials filled with antibody solution were subjected to a cycle of dropping and shaking using the friability testing apparatus to examine the combined effect of cavitation and agitation on protein aggregation. A cycle of dropping and shaking generated a massive amount of subvisible particles. Comparison of aggregation rate at different fill volumes indicated that shaking plays an important role in protein aggregation due to combination stress. Furthermore, the impact of dropping on aggregate formation was apparent because aggregation rate under combination stress was much faster than that under shaking stress alone. Increase in aggregate concentration was observed after shaking of the antibody solution, which was freshly filled into vials that had been previously used in the dropping and shaking test. Polysorbate 80 was effective in inhibiting aggregate formation under combination stress. These results suggest the following particle formation pathway: cavitation caused by dropping promotes antibody unfolding, the unfolded antibodies adsorb on the inner surface of the vial, and subsequent shaking yields subvisible particles by desorbing the adsorbed antibodies. (C) 2017 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据