4.7 Article

Two-Dimensional Effects on the Oxygen Reduction Reaction and Irreversible Surface Oxidation of Metallic Ru Nanosheets and Nanoparticles

期刊

ACS APPLIED NANO MATERIALS
卷 2, 期 9, 页码 5743-5751

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.9b01216

关键词

metallic nanosheet; surface oxidation; in situ XAS techniques; EXAFS; XANES simulation

资金

  1. Polymer Electrolyte Fuel Cell Program from the New Energy and Industrial Technology Development Organization (NEDO) of Japan
  2. Japan Society for the Promotion of Science (JSPS) [16J09715]
  3. Grants-in-Aid for Scientific Research [16J09715] Funding Source: KAKEN

向作者/读者索取更多资源

Nanosheets have attracted increasing attention owing to their electrochemical properties. While the relationship between the activity and stability of metal nanoparticles has been widely reported, the activity-stability relationship of metallic nanosheets has not been characterized. Herein, we report on this relationship for Ru nanosheets and discuss its difference with the relationship for Ru nanoparticles. The oxygen reduction reaction activity of the Ru nanosheets was 130% higher than that of the nanoparticles, which was attributed to the larger electrochemically active surface area of the nanosheets. In addition, the activity of the nanosheets after potential cycling was ca. 40 times higher than that of the nanoparticles. Based on in situ X-ray absorption spectroscopic (XAS) measurements and X-ray absorption near-edge structure (XANES) spectra simulations by first-principles theoretical calculations, the average coordination number of the Ru atoms on the nanosheet surface was larger than that on the nanoparticle surface; thus, we concluded that this property contributed to the higher stability of the nanosheets. This finding provides supporting evidence for the cause of the high intrinsic activity and stability of metallic nanosheets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据