4.1 Article

The effect of lithium chloride on the motor function of spinal cord injury-controlled rat and the relevant mechanism

期刊

EUROPEAN JOURNAL OF INFLAMMATION
卷 17, 期 -, 页码 -

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/2058739219852855

关键词

brain-derived neurotrophic factor (BDNF); lithium chloride; remyelination

向作者/读者索取更多资源

The objective of this study is to discuss the effect and mechanism of lithium chloride on the rehabilitation of locomotion post spinal cord injury (SCI) by observing the effect of lithium chloride on the expression of the brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) pathway. In total, 36 Sprague-Dawley (SD) rats were randomly divided into the sham operation group (n = 12), model group (n = 12), and lithium chloride group (n = 12). The sham operation group underwent laminectomy, while for the model group and the lithium chloride group with the NYU spinal cord impactor the SCI model was established. Basso, Beattie, and Bresnahan (BBB) score was used to evaluate locomotion after administration for 1, 3, 5, and 7 days, and the tissues were gathered for Nissl staining, transmission electron microscopy, immunofluorescence, and Western blot. With a statistical difference (P < 0.05) on the 3rd day and significant difference (P < 0.01) on the 5th day post administration, a higher BBB score was observed in the lithium chloride group indicating that lithium chloride improved the locomotion function after SCI. A better structure and morphology of neuron were observed by Nissl staining in the lithium chloride group. Lithium chloride promoted BDNF secretion from neurons in the spinal cord anterior horn with a significant difference compared to the model group (P < 0.01). Compared with the model group, lithium chloride significantly promoted the expression of BDNF protein and phosphorylated TrkB protein (P < 0.05), but no difference in the expression of TrkB was detected. Lithium chloride can alleviate the locomotion function after SCI with a mechanism that it can promote BDNF secretion from neurons in the spinal cord anterior horn and phosphorylation of TrkB to upregulate the BDNF/TrkB pathway supporting survival of neurons and regeneration and remyelination of axons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据