4.6 Article

Atomically dispersed metal dimer species with selective catalytic activity for nitrogen electrochemical reduction

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 7, 期 39, 页码 22242-22247

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta07845b

关键词

-

资金

  1. ARC-LIEF Grants [LE120100104, LE0237478]
  2. China Scholarship Council (CSC)
  3. National Science Foundation of Zhejiang Province [LY18E020007]

向作者/读者索取更多资源

The electrocatalytic nitrogen reduction reaction (NRR) is emerging as an attractive strategy for sustainable and distributed production of ammonia (NH3) under ambient conditions. Because of the use of unsatisfactory electrocatalysts, however, it is still encountering issues of low yield rates and limited efficiency, resulting from the sluggish reaction kinetics, the competing hydrogen evolution reaction and additional reaction product formation. Herein, an atomically dispersed transition metal dimer species was employed to selectively accelerate the nitrogen reduction reaction kinetics for high reduction efficiency and simultaneously alleviate the additional reaction. In this system, atomic Fe and Mo metal dimer in situ anchored on defect-rich graphene layers can realize selective electroreduction of nitrogen to ammonia by numerous FeMoNxC active sites. It exhibits higher catalytic activity than its counterparts (Fe@NG and Mo@NG) owing to a combination of ligand, geometric and synergistic effects, with a yield rate of 14.95 mu g h(-1) mg(-1) at -0.4 V and a faradaic efficiency of 41.7% at -0.2 V. The superior performance of this atomic transition metal dimer catalyst can outperform some precious metal-based catalysts due to its excellent selectivity and high catalytic activity. The specific structure of the N-coordinated FeMo dimer was further identified to be FeMoN6 by density functional theory (DFT). The catalytic reaction pathway and mechanism were explored by (DFT) calculations and proposed based on the FeMoN6 model. The existence of numerous FeMoN6 active sites can not only weaken the N N bond, but also efficiently catalyze nitrogen reduction through the alternating pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据