4.6 Article

Ideal isotropic auxetic networks from random networks

期刊

SOFT MATTER
卷 15, 期 40, 页码 8084-8091

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9sm01241a

关键词

-

资金

  1. NSF MRSEC [DMR-1420709]
  2. DOE [DE-FG02-03ER46088]
  3. Simons Foundation for the collaboration Cracking the Glass Problem award [348125]
  4. Center for Hierarchical Materials Design (CHiMaD) - National Institute of Standards and Technology, US Department of Commerce [70NANB14H012]
  5. U.S. Department of Energy (DOE) [DE-FG02-03ER46088] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Auxetic materials are characterized by a negative Poisson's ratio, nu. As the Poisson's ratio approaches the lower isotropic mechanical limit of nu = -1, materials show enhanced resistance to impact and shear, making them suitable for applications ranging from robotics to impact mitigation. Past experimental efforts aimed at reaching the nu = -1 limit have resulted in highly anisotropic materials, which show a negative Poisson's ratio only when subjected to deformations along specific directions. Isotropic designs have only attained moderately auxetic behavior or have led to solutions that cannot be manufactured in 3D. Here, we present a design strategy to create isotropic structures from disordered networks, which result in Poisson's ratios as low as nu = -0.98. The materials conceived through this approach are successfully fabricated in the laboratory and behave as predicted. nu depends on network structure and bond strengths; this sheds light on the motifs which lead to auxetic behavior. The ideas introduced here can be generalized to 3D, a wide range of materials, and a spectrum of length scales, thereby providing a general platform that could impact technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据