4.6 Article

Sr2Fe1.4Mn0.1Mo0.5O6-δ perovskite cathode for highly efficient CO2 electrolysis

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 7, 期 40, 页码 22939-22949

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta07689a

关键词

-

资金

  1. National Nature Science Foundation of China [91645101]
  2. Anhui Estone Materials Technology Co., Ltd. [2016340022003195]
  3. Dutch Technology Foundation STW [15325]

向作者/读者索取更多资源

High-temperature solid oxide cells afford chemical storage of renewable electricity. In particular, the electrochemical conversion of the greenhouse gas CO2 is attracting increasing interest to facilitate a sustainable energy technology. In this work, the effectiveness of perovskite-structured Sr2Fe1.4Mn0.1Mo0.5O6-delta (SFMM0.1) for use as cathode material for CO2 electrolysis has been investigated. Both parent Sr2Fe1.5Mo0.5O6-delta (SFM) and SFMM0.1 are found to be redox stable in air and 5% H-2/Ar at 850 degrees C. Electrical conductivity relaxation experiments and first-principle calculations reveal that oxygen transport, CO2 adsorption and reduction kinetics are enhanced upon doping of SFM with Mn. The faster CO2 reduction kinetics observed for SFMM0.1 relative to SFM is reflected in a lower polarization resistance when both materials are used as single-phase electrodes in symmetrical cells. The polarization resistance in 50% CO/CO2 at 800 degrees C decreases from 1.15 omega cm(2) for SFM to 0.60 omega cm(2) for SFMM0.1. Under similar conditions, the polarization resistance decreases further to 0.50 omega cm(2) for a symmetrical cell with dual-phase SFMM0.1-SDC (samaria-doped ceria) electrodes. Unprecedented performance is demonstrated when SFMM0.1-SDC is integrated as the cathode in a solid oxide cell for electrolysis of pure CO2, achieving a current density of 1.35 A cm(2) at 800 degrees C at 1.5 V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据