4.7 Article

Peptidyl-Prolyl Model Study: How Does the Electronic Effect Influence the Amide Bond Conformation?

期刊

JOURNAL OF ORGANIC CHEMISTRY
卷 82, 期 17, 页码 8831-8841

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.joc.7b00803

关键词

-

资金

  1. DAAD
  2. DFG research group 1805

向作者/读者索取更多资源

The triple-helical structure of collagen, the most abundant protein in animal bodies, owes its stability to post-translationally installed hydroxyl groups at position 4 of prolyl residues. To shed light on the nature of this phenomenon, we have examined the influence of the 4-substituent on the amide isomerism in peptidyl-prolyl analogues. The rigid bicyclic skeleton of 2,4-methanoprolines allowed us to follow the through-bond impact of the substituent group (electronic effect) without the side-chain conformation being affected by a stereoelectronic effect. These proline analogues were prepared by [2 + 2] photo-cycloaddition of (2-allylamino)acrylic acid derivatives. Subsequent pK(a), studies demonstrated a remarkable electronic effect of the 4-fluorine substitution, while the effect of the 4-methyl group was negligible. The trans/cis amide ratio was measured in model compounds under low temperature conditions. The observed prevalence for a trans-amide is extraordinary, and in this regard, 2,4-methanoproline is closer to primary a-amino acids than to proline. At the same time the amide rotation velocities were 3-4 orders of magnitude higher when compared to N-acetylprolyl. Finally, our results indicate that the electronic effect of the 4-substituent only affects the kinetics of the amide isomerization but not the thermodynamic prevalence for the trans-rotamer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据