4.6 Article

A multi-input light-stimulated synaptic transistor for complex neuromorphic computing

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 7, 期 40, 页码 12523-12531

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9tc03898a

关键词

-

资金

  1. National Key Research and Development Program of China [2016YFB0401103]

向作者/读者索取更多资源

Multi-input synaptic devices that can imitate multi-synaptic connection and integration in the human brain are crucial for the construction of ideal brain-like computing systems with parallelism, low power consumption, and robustness. However, the current multi-input synaptic devices are all based on electrical operation, bringing undesirable signal redundancy, huge device scale, and large energy consumption. Here, for the first time, a multi-input synaptic device utilizing light as an input signal was realized to overcome the drawbacks induced by electrical operation. The essential synaptic functions including synaptic short-term plasticity (STP), long-term plasticity (LTP), and paired-pulse facilitation (PPF) were demonstrated in an energy-efficient way (picojoule magnitude) and synaptic superlinear/sublinear integrations were successfully imitated in our device. Moreover, the AND/OR light logic functions and the light-stimulated Pavlov classical conditioning experiment with dogs were realized based on the synaptic integration behaviors. Interestingly, owing to the persistent photoconductivity (PPC) effect of the semiconductor layer and synaptic behaviors induced by perovskite quantum dot (QD) absorption, the device could implement detection, acquisition, analysis, and storage of light signals, enabling its potential application in fog computing. This powerful device offers the potential for building an artificial intelligence neural network with miniaturization, low energy consumption, and superior connectivity between discrete computing modules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据