4.7 Article

Effects of stabilized Criegee intermediates (sCIs) on sulfate formation: a sensitivity analysis during summertime in Beijing-Tianjin-Hebei (BTH), China

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 19, 期 20, 页码 13341-13354

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-19-13341-2019

关键词

-

资金

  1. National Key RD Plan [2017YFC0210000]
  2. National Research Program for Key Issues in Air Pollution Control [DQGG0105]

向作者/读者索取更多资源

Sulfate aerosols have profound impacts on the climate, ecosystem, visibility, and public health, but the sulfate formation pathway remains elusive. In the present study, a source-oriented WRF-Chem model is applied to simulate a persistent air pollution episode from 4 to 15 July 2015 in Beijing-Tianjin-Hebei (BTH), China, to study the contributions of four pathways to sulfate formation. When comparing simulations to measurements in BTH, the index of agreement (IOA) of meteorological parameters, air pollutants, and aerosol species generally exceeds 0.6. On average in BTH, the heterogeneous reaction of SO2 involving aerosol water and the SO2 oxidation by OH constitutes the two most important sulfate sources, with a contribution of about 35 %-38 % and 33 %-36 %, respectively. Primary sulfate emissions account for around 22 %-24 % of the total sulfate concentration. SO2 oxidation by stabilized Criegee intermediates (sCIs) also plays an appreciable role in sulfate formation, with a contribution of around 9 % when an upper limit of the reaction rate constant of sCIs with SO2 (kappa SCI+SO2 = 3.9 x 10(-11) cm(3) s(-1)) and a lower limit of the reaction rate constant of sCIs with H2O (kappa SCI+H2O = 1.97 x 10(-18) cm(3) s(-1)) are used. Sensitivity studies reveal that there are still large uncertainties in the sulfate contribution of SO2 oxidation by sCIs. The sulfate contribution of the reaction is decreased to less than 3 % when kappa SCI+SO2 is decreased to 6.0 x 10(-13) Cm-3 s(-1). Furthermore, when kappa SCI+H2O is increased to 2.38 x 10(-15) cm(3) s(-1) based on the reported ratio of kappa SCI+H2O to kappa SCI+SO2 (6.1 x 10(-5)), the sulfate contribution becomes insignificant at less than 2 %. Further studies need to be conducted to better determine kappa SCI+SO2 and kappa SCI+H2O to evaluate the effects of sCI chemistry on sulfate formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据