4.6 Article

Nonlinear dynamics of Aharonov-Bohm cages

期刊

PHYSICAL REVIEW A
卷 100, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.100.043829

关键词

-

资金

  1. ERC Starting Grant TopoCold
  2. Universite Libre de Bruxelles (ULB)
  3. Scottish Universities Physics Alliance (SUPA)

向作者/读者索取更多资源

The interplay of pi-flux and lattice geometry can yield full localization of quantum dynamics in lattice systems, a striking interference phenomenon known as Aharonov-Bohm caging. At the single-particle level, this full-localization effect is attributed to the collapse of Bloch bands into a set of perfectly flat (dispersionless) bands. While interparticle interactions generally break the cages, not much is known regarding the fate of Aharonov-Bohm caging in the presence of classical nonlinearities, as captured by a discrete nonlinear Schrodinger equation. This scenario is relevant to recent experimental realizations of photonic Aharonov-Bohm cages, using classical light propagating in arrays of coupled waveguides. In this article, we demonstrate that caging always occurs in this nonlinear setting, as long as the nonlinearities remain local. As a central result, we identify special caged solutions that are accompanied by a breathing dynamics of the field intensity that we describe in terms of an effective two-mode model reminiscent of a bosonic Josephson junction. Also, motivated by a formal similarity with the Gross-Pitaevskii equation describing interacting bosons, we explore the quantum regime of Aharonov-Bohm caging using small ensembles of interacting particles, and reveal quasicaged collapse-revival dynamics. The results stemming from this work open an interesting route towards the characterization of nonlinear dynamics in interacting flat-band systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据