4.3 Article

Model Test and Numerical Analysis of a Multi-Pile Offshore Wind Turbine Under Seismic, Wind, Wave, and Current Loads

出版社

ASME
DOI: 10.1115/1.4035305

关键词

offshore wind turbine; model test; finite element analysis; earthquake analysis

资金

  1. National Natural Science Foundation of China [51121005]
  2. Chinese Scholarship Council
  3. Department of Marine Technology (NTNU)

向作者/读者索取更多资源

Offshore wind turbines (OWTs) might be subjected to seismic loads with different peak accelerations during operation in the actively seismic regions. The earthquakes might be a potential risk for the OWTs due to its stochastic nature. Earthquake with wind and wave loads could act on OWT at the same time; thus, the structural responses of such OWTs should be analyzed taking into consideration the reasonable load combinations. Based on the hydro-elastic similarity, an integrated model of the combined National Renewable Energy Laboratory (NREL) 5MW wind turbine and a practical pentapod substructure is designed for testing. The governing equations of motion of the integrated OWT are established. The dynamic tests and numerical analysis of the OWT model are performed under different combinations of seismic, wind, and sea load conditions. The El Centro and American Petroleum Institute (API)-based synthesized seismic waves with different peak ground accelerations (PGAs) are considered in this study. The numerical results are in good agreement with the experimental ones. The coupling effect of the OWT structure under the combined load conditions is demonstrated from the experimental and numerical results. The results indicate that the interaction of earthquake, wind, wave, and current should be taken into account in order to obtain proper structural response, especially with small PGA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据