4.7 Article

Isoliquiritigenin reduces oxidative damage and alleviates mitochondrial impairment by SIRT1 activation in experimental diabetic neuropathy

期刊

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
卷 47, 期 -, 页码 41-52

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2017.05.001

关键词

AMPK; Autophagy; Mitochondriogenesis; NAD(+); PGC-1 alpha; SIRT1

资金

  1. Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India

向作者/读者索取更多资源

Sirtuin (SIRT1) inactivation underlies the pathogenesis of insulin resistance and hyperglycaemia-associated vascular complications, but its role in diabetic neuropathy (DN) has not been yet explored. We have evaluated hyperglycaemia-induced alteration of SIRT1 signalling and the effect of isoliquiritigenin (ILQ) on SIRT1-directed AMP kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 alpha) signalling in peripheral nerves of streptozotocin (STZ) (55 mg/kg, ip)-induced diabetic rats and in high glucose (30 mM)-exposed neuro2a (N2A) cells. Diabetic rats and high glucose-exposed N2A cells showed reduction in SIRT1 expression with consequent decline in mitochondrial biogenesis and autophagy. ILQ (10 & 20 mg/kg, po) administration to diabetic rats for 2 weeks and exposure to glucose-insulted N2A cells resulted in significant SIRT1 activation with concurrent increase in mitochondrial biogenesis and autophagy. ILQ administration also enhanced NAD(+)/NADH ratio in peripheral sciatic nerves which explains its possible SIRT1 modulatory effect. Functional and behavioural studies show beneficial effect of ILQ as it alleviated nerve conduction and nerve blood flow deficits in diabetic rats along with improvement in behavioural parameters (hyperalgesia and allodynia). ILQ treatment to N2A cells reduced high glucose-driven ROS production and mitochondrial membrane depolarization. Further, ILQ-mediated SIRT1 activation facilitated the Nrf2-directed antioxidant signalling. Overall, results from this study suggest that SIRT1 activation by ILQ mimic effects of calorie restriction, that is, PGC-1 alpha-mediated mitochondrial biogenesis, FOX03a mediated stress resistance and AMPK mediated autophagy effects to counteract the multiple manifestations in experimental DN. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据