4.7 Article

Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to a high-carbohydrate meal in healthy men and women

期刊

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
卷 49, 期 -, 页码 53-62

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2017.07.013

关键词

Randomized controlled trial; Postprandial blood glucose; Polyphenols; Insulin; Glucose-dependent insulinotropic polypeptide; Apple

资金

  1. King's College London
  2. Mexican Secretariat of Public Education

向作者/读者索取更多资源

Postprandial glycemic responses to meals are inhibited by polyphenol-rich plant foods. Combinations of polyphenols may be particularly effective through complementary mechanisms. A randomized, controlled, double-blinded cross-over trial was conducted in healthy volunteers to test the hypothesis that apple and blackcurrant polyphenol-rich drinks would reduce postprandial blood glucose concentrations. Secondary outcomes included insulin and glucose-dependent insulinotropic polypeptide (GIP) secretion. Twenty men (mean age 26 y, SD 8) and 5 postmenopausal women (mean age 57 y, SD 3) consumed a placebo drink (CON) and 2 polyphenol-rich drinks containing fruit extracts: either 1200 mg apple polyphenols (AE), or 600 mg apple polyphenols+600 mg blackcurrant anthocyanins (AE+BE), in random order with a starch and sucrose meal. Incremental areas under the curve (iAUC) for plasma glucose concentrations were lower following AE+BE over 0-30 and 0-120 min compared with CON; mean differences (95% CI) -32 mmol/L.min (-41, -22, P<.0005) and -52 mmol/L min (-94, -9, P<.05), respectively. AE significantly reduced iAUC 0-30 min (mean difference -26 mmol/L min, -35, -18, P<.0005) compared with CON, but the difference over 120 min was not significant. Postprandial insulin, C-peptide and GIP concentrations were significantly reduced relative to CON. A dose response inhibition of glucose transport was demonstrated in Caco-2 cells, including total and GLUT-mediated transport, and SGLT1-mediated glucose transport was strongly inhibited at all doses in Xenopus oocytes, following 10 min incubation with 0.125-4 mg apple polyphenols/ml. In conclusion, ingestion of apple and blackcurrant polyphenols decreased postprandial glycemia, which may be partly related to inhibition of intestinal glucose transport. (C) 2017 The Authors. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据