4.6 Article

Two-dimensional spin-valley locking spin valve

期刊

PHYSICAL REVIEW B
卷 100, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.100.161110

关键词

-

资金

  1. National Science Foundation (NSF) through the E2CDA program [ECCS-1740136]
  2. Semiconductor Research Corporation (SRC) through the nCORE program

向作者/读者索取更多资源

Valleytronics is an emerging field of research which employs energy valleys in the band structure of two-dimensional (2D) electronic materials to encode information. A special interest has been triggered by the associated spin-valley coupling which reveals rich fundamental physics and enables new functionalities. Here, we propose exploiting the spin-valley locking in 2D materials with a large spin-orbit coupling and electric-field reversible valley spin polarization, such as germanene, stanene, a 1T' transition metal dichalcogenide (TMDC) monolayer, and a 2H-TMDC bilayer, to realize a valley spin valve (VSV). The valley spin polarization in these materials can be switched by an external electric field, which enables functionalities of a valley spin polarizer or a valley spin analyzer. When placed in series, they constitute the proposed VSV-a device whose conductance state is ON or OFF depending on the relative valley spin polarization of the polarizer and the analyzer. Using quantum-transport calculations based on an adequate tight-binding model, we predict a giant VSV ratio of nearly 100% for both germanene- and stanene-based VSV devices. Our results demonstrate the implication of the spin-valley coupling in 2D materials for the novel device concept promising for valleytronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据