4.7 Article Proceedings Paper

Tailoring the surface structures of iron oxide nanorods to support Au nanoparticles for CO oxidation

期刊

CHINESE JOURNAL OF CATALYSIS
卷 40, 期 12, 页码 1884-1894

出版社

SCIENCE PRESS
DOI: 10.1016/S1872-2067(19)63374-7

关键词

Iron oxide nanorods; Surface property; Au nanoparticle; CO oxidation; Structure evolution

资金

  1. National Natural Science Foundation of China [21773269, 21761132025, 91545119, 21703262]
  2. Youth Innovation Promotion Association CAS [2015152]
  3. Joint Foundation of Liaoning Province Natural Science Foundation [20180510047]
  4. Shenyang National Laboratory for Materials Science [20180510047]

向作者/读者索取更多资源

Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation. Catalytic performance not only critically depends on the size of the supported Au nanoparticles (NPs) but also strongly on the chemical nature of the iron oxide. In this study, Au NPs supported on iron oxide nanorods with different surface properties through beta-FeOOH annealing, at varying temperatures, were synthesized, and applied in the CO oxidation. Detailed characterizations of the interactions between Au NPs and iron oxides were obtained by X-ray diffraction, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy. The results indicate that the surface hydroxyl group on the Au/FeOOH catalyst, before calcination (Au/FeOOH-fresh), could facilitate the oxygen adsorption and dissociation on positively charged Au, thereby contributing to the low-temperature CO oxidation reactivity. After calcination at 200 degrees C under air exposure, the chemical state of the supported Au NP on varied iron oxides partly changed from metal cation to Au-0, along with the disappearance of the surface OH species. Au/FeOOH with the highest Au-0 content exhibits the highest activity in CO oxidation, among the as-synthesized catalysts. Furthermore, good durability in CO oxidation was achieved over the Au/FeOOH catalyst for 12 h without observable deactivation. In addition, the advanced identical-location TEM method was applied to the gas phase reaction to probe the structure evolution of the Au/iron oxide series of the catalysts and support structure. A Au NP size-dependent Ostwald ripening process mediated by the transport of Au(CO)(x) mobile species under certain reaction conditions is proposed, which offers a new insight into the validity of the structure-performance relationship. (C) 2019, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据