4.6 Article

Modification of electrophysiological activity pattern after anterior thalamic deep brain stimulation for intractable epilepsy: report of 3 cases

期刊

JOURNAL OF NEUROSURGERY
卷 126, 期 6, 页码 2028-2035

出版社

AMER ASSOC NEUROLOGICAL SURGEONS
DOI: 10.3171/2016.6.JNS152958

关键词

deep brain stimulation; intractable epilepsy; anterior thalamic nucleus; electroencephalography; functional neurosurgery

向作者/读者索取更多资源

OBJECTIVE Thalamic stimulation can provoke electroencephalography (EEG) synchronization or desynchronization, which can help to reduce the occurrence of seizures in intractable epilepsy, though the underlying mechanism is not fully understood. Therefore, the authors investigated changes in EEG electrical activity to better understand the seizure reducing effects of deep brain stimulation (DBS) in patients with intractable epilepsy. METHODS Electrical activation patterns in the epileptogenic brains of 3 patients were analyzed using classical low resolution electromagnetic tomography analysis recursively applied (CLARA). Electrical activity recorded during thalamic stimulation was compared with that recorded during the preoperative and postoperative off-stimulation states in patients who underwent anterior thalamic nucleus DBS for intractable epilepsy. RESULTS Interictal EEG was fully synchronized to the beta frequency in the postoperative on-stimulation period. The CLARA showed that electrical activity during preoperative and postoperative off-stimulation states was localized in cortical and subcortical areas, including the insular, middle frontal, mesial temporal, and precentral areas. No electrical activity was localized in deep nucleus structures. However, with CLARA, electrical activity in the postoperative on-stimulation period was localized in the anterior cingulate area, basal ganglia, and midbrain. CONCLUSIONS Anterior thalamic stimulation could spread electrical current to the underlying neuronal networks that connect with the thalamus, which functions as a cortical pacemaker. Consequently, the thalamus could modify electrical activity within these neuronal networks and influence cortical EEG activity by inducing neuronal synchronization between the thalamus and cortical structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据