4.7 Article

Dedicated Hippocampal Inhibitory Networks for Locomotion and Immobility

期刊

JOURNAL OF NEUROSCIENCE
卷 37, 期 38, 页码 9222-9238

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1076-17.2017

关键词

behavior; calcium imaging; circuits; hippocampus; interneurons; virtual reality

资金

  1. McDonnell Center for Systems Neuroscience
  2. McDonnell Center for Cellular and Molecular Neurobiology

向作者/读者索取更多资源

Network activity is strongly tied to animal movement; however, hippocampal circuits selectively engaged during locomotion or immobility remain poorly characterized. Here we examined whether distinct locomotor states are encoded differentially in genetically defined classes of hippocampal interneurons. To characterize the relationship between interneuron activity and movement, we used in vivo, two-photon calcium imaging in CA1 of male and female mice, as animals performed a virtual-reality (VR) track running task. We found that activity in most somatostatin-expressing and parvalbumin-expressing interneurons positively correlated with locomotion. Surprisingly, nearly one in five somatostatin or one in seven parvalbumin interneurons were inhibited during locomotion and activated during periods of immobility. Anatomically, the somata of somatostatin immobility-activated neurons were smaller than those of movement-activated neurons. Furthermore, immobility-activated interneurons were distributed across cell layers, with somatostatin-expressing cells predominantly in stratum oriens and parvalbumin-expressing cells mostly in stratum pyramidale. Importantly, each cell's correlation between activity and movement was stable both over time and across VR environments. Our findings suggest that hippocampal interneuronal microcircuits are preferentially active during either movement or immobility periods. These inhibitory networks may regulate information flow in labeled lines within the hippocampus to process information during distinct behavioral states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据