4.7 Article

Distinct Laterality in Forelimb- Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections

期刊

JOURNAL OF NEUROSCIENCE
卷 37, 期 45, 页码 10904-10916

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1188-17.2017

关键词

channelrhodopsin-2; collison test; contralateral/ipsilateral; cortical hierarchy; pyramidal cell; rat

资金

  1. AMED Brain/MINDS
  2. MEXT Supported Program for the Strategic Research Foundation at Private Universities
  3. [JP15J00807]
  4. [JP16J11697]
  5. [JP16H01516]
  6. [JP26112005]
  7. [JP16H06276]
  8. Grants-in-Aid for Scientific Research [16H01516, 17K12703, 26112005] Funding Source: KAKEN

向作者/读者索取更多资源

Two distinct motor areas, the primary and secondary motor cortices (M1 and M2), play crucial roles in voluntary movement in rodents. The aim of this study was to characterize the laterality in motor cortical representations of right and left forelimb movements. To achieve this goal, we developed a novel behavioral task, the Right-Left Pedal task, in which a head-restrained male rat manipulates a right or left pedal with the corresponding forelimb. This task enabled us to monitor independent movements of both forelimbs with high spatiotemporal resolution. We observed phasic movement-related neuronal activity (Go-type) and tonic hold-related activity (Hold-type) in isolated unilateral movements. In both M1 and M2, Go-type neurons exhibited bias toward contralateral preference, whereas Hold-type neurons exhibited no bias. The contralateral bias was weaker in M2 than M1. Moreover, we differentiated between intratelencephalic (IT) and pyramidal tract (PT) neurons using optogenetically evoked spike collision in rats expressing channelrhodopsin-2. Even in identified PT and IT neurons, Hold-type neurons exhibited no lateral bias. Go-type PT neurons exhibited bias toward contralateral preference, whereas IT neurons exhibited no bias. Our findings suggest a different laterality of movement representations of M1 and M2, in each of which IT neurons are involved in cooperation of bilateral movements, whereas PT neurons control contralateral movements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据