4.7 Article

Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex

期刊

JOURNAL OF NEUROSCIENCE
卷 37, 期 30, 页码 7188-7197

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2896-16.2017

关键词

direct cortical stimulation; electrical brain stimulation; electrical stimulation; magnification factor; phosphene; visual cortex

资金

  1. National Institutes of Health [EY023336]
  2. National Institute of Mental Health-National Institutes of Health [R00MH103479]

向作者/读者索取更多资源

Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据