4.7 Article

Transcranial Alternating Current Stimulation Attenuates Neuronal Adaptation

期刊

JOURNAL OF NEUROSCIENCE
卷 37, 期 9, 页码 2325-2335

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2266-16.2016

关键词

entrainment; local field potential; motion adaptation; motion after effect; neural mechanisms; transcranial alternating current stimulation

资金

  1. Army Research Office [W911NF-14-1-0408]
  2. National Institute of Mental Health, National Institute of Neurological Disorders and Stroke [R01MH111766]
  3. Eye Institute of the National Institutes of Health [R01EY017605]
  4. Charles and Johanna Busch Memorial Fund at Rutgers, State University of New Jersey

向作者/读者索取更多资源

We previously showed that brief application of 2 mA (peak-to-peak) transcranial currents alternating at 10 Hz significantly reduces motion adaptation in humans. This is but one of many behavioral studies showing that weak currents applied to the scalp modulate neural processing. Transcranial stimulation has been shown to improve perception, learning, and a range of clinical symptoms. Few studies, however, have measured the neural consequences of transcranial current stimulation. Wecapitalized on the strong link between motion perception and neural activity in the middle temporal (MT) area of the macaque monkey to study the neural mechanisms that underlie the behavioral consequences of transcranial alternating current stimulation. First, we observed that 2 mA currents generated substantial intracranial fields, which were much stronger in the stimulated hemisphere (0.12 V/m) than on the opposite side of the brain (0.03 V/m). Second, we found that brief application of transcranial alternating current stimulation at 10 Hz reduced spike-frequency adaptation of MT neurons and led to a broadband increase in the power spectrum of local field potentials. Together, these findings provide a direct demonstration that weak electric fields applied to the scalp significantly affect neural processing in the primate brain and that this includes a hitherto unknown mechanism that attenuates sensory adaptation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据