4.2 Article

Local magnetic anisotropy by polarized neutron powder diffraction: Application of magnetically induced preferred crystallite orientation

期刊

PHYSICAL REVIEW RESEARCH
卷 1, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.1.033100

关键词

-

资金

  1. CNRS

向作者/读者索取更多资源

Polarized neutron diffraction allows one to determine the local susceptibility tensor on the magnetic site both in single crystals and powders. It is widely used in the studies of single crystals, but it is still hardly applicable to a number of highly interesting powder materials, such as molecular magnets or nanoscale systems because of the low luminosity of existing instruments and the absence of appropriate data analysis software. We show that these difficulties can be overcome by using a large area detector in combination with the two-dimensional Rietveld method and powder samples with a magnetically induced preferred crystallite orientation. This is demonstrated by revisiting two test powder compounds, namely, the low anisotropy (soft) ferrimagnetic compound Fe3O4 and the spin-ice compound Ho2Ti2O7 with high local anisotropy. The values of the magnetic moments in Fe3O4 and the susceptibility tensors of Ho2Ti2O7 at various temperatures and fields were found in perfect agreement with these found earlier in single-crystal experiments. The magnetically induced preferred crystallite orientation was used to study the local susceptibility of a single-molecule magnet Co([(CH3)(2)N](2)CS)(2)Cl-2. Hence, the studies of local magnetic anisotropy in powder systems might now become accessible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据