4.4 Article

Neural coupling between homologous muscles during bimanual tasks: effects of visual and somatosensory feedback

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 117, 期 2, 页码 655-664

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00269.2016

关键词

bimanual task; sensory feedback; somatosensory feedback; motor control; electromyogram; intermuscular coherence

资金

  1. U.S. Army Medical Research and Materiel Command [W81XWH-05-1-0160]

向作者/读者索取更多资源

While the effects of sensory feedback on bimanual tasks have been studied extensively at two ends of the motor control hierarchy, the cortical and behavioral levels, much less is known about how it affects the intermediate levels, including neural control of homologous muscle groups. We investigated the effects of somatosensory input on the neural coupling between homologous arm muscles during bimanual tasks. Twelve subjects performed symmetric elbow flexion/extension tasks under different types of sensory feedback. The first two types involve visual feedback, with one imposing stricter force symmetry than the other. The third incorporated somatosensory feedback via a balancing apparatus that forced the two limbs to produce equal force levels. Although the force error did not differ between feedback conditions, the somatosensory feedback significantly increased temporal coupling of bilateral force production, indicated by a high correlation between left/right force profiles (P < 0.001). More importantly, intermuscular coherence between biceps brachii muscles was significantly higher with somatosensory feedback than others (P = 0.001). Coherence values also significantly differed between tasks (flexion/extension). Notably, whereas feedback type mainly modulated coherence in the alpha- and gamma-bands, task type only affected beta-band coherence. Similar feedback effects were observed for triceps brachii muscles, but there was also a strong phase effect on the coherence values (P < 0.001) that could have diluted feedback effects. These results suggest that somatosensory feedback can significantly increase neural coupling between homologous muscles. Additionally, the between-task difference in beta-band coherence may reflect different neural control strategies for the elbow flexor and extensor muscles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据