4.7 Article

Remediation of industrial contaminated water with arsenic and nitrate by mass-produced Fe-based metallic glass: Toward potential industrial applications

期刊

出版社

ELSEVIER
DOI: 10.1016/j.susmat.2019.e00126

关键词

Metallic glass; Arsenic separation; Nitrate reduction; Reusability; Industrial application

资金

  1. Australian Research Council [DP130103592]
  2. National Science Foundation of China [61671206, 51771103]

向作者/读者索取更多资源

Contamination by arsenic (As) and nitrate (NO3-) in groundwater attributed to anthropogenic activities and natural biogeochemical reactions has been considered as severe threats to human society and aquatic ecosystems. Current techniques for removing those contaminants are limited by high cost but low efficiency, leading to a lower economic value. In this work, as advanced alternative of heterogeneous crystalline iron materials, low-cost Fe78Si9B13 metallic glass (MG) with mature production by melt spinning is employed in real industrial contaminated water by investigating effective separation of As and reduction of O-3(-). Fe-based MG demonstrates attractively high removal rate of As in 30 min with low soluble Fe concentration (1.5 mg L-1), which is ascribed to synergistic effect of reduction/adsorption by MG, precipitation of arsenic sulfide and adsorption of generated iron sulfide. On the other hand, remarkable sustainability up to 20 reused times of Fe-based MG for NO(3)(- )reduction suggests promising economic value in industrial applications. Surface area normalized rate coefficient indicates superior catalytic capacity of Fe-based MG compared with other iron materials. With simultaneous investigation of removing As and NO3-, this work aims to assess applicability of Fe-based MG in practical applications and to provide a novel clue of extending their multifunction in future. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据