4.7 Article

Lack of interleukin-13 receptor a1 delays the loss of dopaminergic neurons during chronic stress

期刊

JOURNAL OF NEUROINFLAMMATION
卷 14, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s12974-017-0862-1

关键词

Stress; Interleukin; Parkinson's disease; Neuroinflammation; Microglia; Oxidative stress

资金

  1. NIH [NS085155]
  2. Michael J. Fox Foundation
  3. College of Physician and Surgeons of Ancona, Italy

向作者/读者索取更多资源

Background: The majority of Parkinson's disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental and genetic factors. Stress and neuroinflammation are among the factors being investigated for their possible contributions to PD. Experiments in rodents showed that severe chronic stress can reduce the number of dopaminergic neurons in the substantia nigra pars compacta (SNc); the same cells that are lost in PD. These actions are at least in part mediated by increased oxidative stress. Here, we tested the hypothesis that the interleukin-13 receptor alpha 1 (IL-13Ra1), a cytokine receptor whose activation increases the vulnerability of dopaminergic neurons to oxidative damage, participates in the stress-dependent damage of these neurons. Methods: Mice were subject to daily sessions of 8 h (acute) stress for 16 weeks (5 days a week), a procedure previously showed to induce loss of dopaminergic neurons in the SNc. The source and the kinetics of interleukin-13 (IL-13), the endogenous ligand of IL-13Ra1, were evaluated 0, 1, 3, 6, and 8 h and at 16 weeks of stress. Identification of IL-13 producing cell-type was performed by immunofluorescent and by in situ hybridization experiments. Markers of oxidative stress, microglia activation, and the number of dopaminergic neurons in IL-13Ra1 knock-out animals (II13ra1(Y/-)) and their wild-type littermates (II13ra1(Y/+)) were evaluated at 16 weeks of stress and at 20 weeks, following a 4 week nonstressed period and compared to non-stressed mice. Results: IL-13 was expressed in microglial cells within the SN and in a fraction of the tyrosine hydroxylase-positive neurons in the SNc. IL-13 levels were elevated during daily stress and peaked at 6 h. 16 weeks of chronic restraint stress significantly reduced the number of SNc dopaminergic neurons in II13ra1(Y/+) mice. Neuronal loss at 16 weeks was significantly lower in II13ra1(Y/-) mice. However, the loss of dopaminergic neurons measured at 20 weeks, after 4 weeks of non-stress following the 16 weeks of stress, was similar in II13ra1(Y/+) and Il13ra1Y/-mice. Conclusions: IL-13, a cytokine previously demonstrated to increase the susceptibility of SNc dopaminergic neurons to oxidative stress, is elevated in the SN by restraint stress. Lack of IL-13Ra1 did not prevent nor halted but delayed neuronal loss in the mouse model of chronic restraint stress. IL-13/IL-13Ra1 may represent a target to reduce the rate of DA neuronal loss that can occur during severe chronic restraint stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据