4.8 Article

Multifunctional zinc ion doped sol - gel derived mesoporous bioactive glass nanoparticles for biomedical applications

期刊

BIOACTIVE MATERIALS
卷 4, 期 -, 页码 312-321

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.bioactmat.2019.10.002

关键词

Bioactive particles; Sol-gel synthesis; Zinc; Bioactivity; Ion release; Bioactive glass

资金

  1. European Union's Horizon 2020 research and innovation program [739566]
  2. European Regional Development Fund [313011R453]
  3. [VEGA 2/0026/17]
  4. [APVV 15/0014]

向作者/读者索取更多资源

Mesoporous bioactive glasses have been widely investigated for applications in bone tissue regeneration and, more recently, in soft tissue repair and wound healing. In this study we produced mesoporous bioactive glass nanoparticles (MBGNs) based on the SiO2-CaO system. With the intention of adding subsidiary biological function, MBGNs were doped with Zn2+ ions. Zn-MBGNs with 8 mol% ZnO content were synthesized via microemulsion assisted sol-gel method. The synthesized particles were homogeneous in shape and size. They exhibited spherical shape, good dispersity, and a size of 130 +/- 10 nm. The addition of zinc precursors did not affect the morphology of particles, while their specific surface area increased in comparison to MBGNs. The presence of Zn2+ ions inhibited the formation of hydroxycarbonate apatite (HCAp) on the particles after immersion in simulated body fluid (SBF). No formation of HCAp crystals on the surface of Zn-MBGNs could be observed after 14 days of immersion. Interestingly, powders containing relatively high amount of zinc released Zn2+ ions in low concentration (0.6-1.2 mg L-1) but in a sustained manner. This releasing feature enables Zn-MBGNs to avoid potentially toxic levels of Zn2+ ions, indeed Zn-MBGNs were seen to improve the differentiation of osteoblast-like cells (MG-63). Additionally, Zn-MBGNs showed higher ability to adsorb proteins in comparison to MBGNs, which could indicate a favourable later attachment of cells. Due to their advantageous morphological and physiochemical properties, Zn-MBGNs show great potential as bioactive fillers or drug delivery systems in a variety of applications including bone regeneration and wound healing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据