4.8 Article

Fluorescence-phosphorescence dual emissive carbon nitride quantum dots show 25% white emission efficiency enabling single-component WLEDs

期刊

CHEMICAL SCIENCE
卷 10, 期 42, 页码 9801-9806

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9sc03492g

关键词

-

资金

  1. NSFC of China [21573019, 21872010]
  2. Shenzhen Peacock Plan [KQTD2016053015544057]

向作者/读者索取更多资源

Developing efficient single-component white light-emitting diodes (WLEDs) is extremely challenging due to the issue of Kasha's rule. Here we report the first demonstration of blue-yellow fluorescence-phosphorescence dual emission from our newly minted single-component white emissive carbon nitride quantum dots (W-CNQDs). The W-CNQDs deliver an overall photoluminescence quantum efficiency of 25%, which is the highest value among white-emitting materials reported to date, based on utilizing both singlet and triplet states. Experimental and theoretical investigations reveal that the carbonyl groups at the rim of the W-CNQDs play a key role in promoting intersystem crossing and inducing intermolecular electronic coupling, affording intensive yellow phosphorescence. Efficient white emission is achieved with a phosphorescence quantum efficiency of 6% under ambient conditions. A WLED is fabricated by integrating W-CNQD phosphors into a UV-LED chip, which shows favorable white light characteristics with CIE coordinates and a CRI of (0.35, 0.39) and 85, respectively, demonstrating good color chromatic stability. This work opens up new opportunities for exploring dual emission mechanisms and designs to facilitate the development of efficient single-component WLEDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据