4.6 Article

Two-dimensional antiferromagnetic Dirac fermions in monolayer TaCoTe2

期刊

PHYSICAL REVIEW B
卷 100, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.100.205102

关键词

-

资金

  1. NSF of China [11734003, 11574029]
  2. National Key R&D Program of China [2016YFA0300600]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB30000000]
  4. Singapore Ministry of Education AcRF Tier 2 [MOE2017-T2-2-108]

向作者/读者索取更多资源

Dirac points in two-dimensional (2D) materials have been a fascinating subject of research. Recently, it has been theoretically predicted that Dirac points may also be stabilized in 2D magnetic systems. However, it remains a challenge to identify concrete 2D materials which host such magnetic Dirac points. Here, based on firstprinciples calculations and theoretical analysis, we propose a stable 2D material, the monolayer TaCoTe2, as an antiferromagnetic (AFM) 2D Dirac material. We show that it has an AFM ground state with an out-of-plane Neel vector. It hosts a pair of 2D AFM Dirac points on the Fermi level in the absence of spin-orbit coupling (SOC). When the SOC is considered, a small gap is opened at the original Dirac points. Meanwhile, another pair of Dirac points appear on the Brillouin zone boundary below the Fermi level, which are robust under SOC and have a type-II dispersion. Such a type-II AFM Dirac point has not been observed before. We further show that the location of this Dirac point as well as its dispersion type can be controlled by tuning the Neel vector orientation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据