4.6 Article

Balancing charge-transfer strength and triplet states for deep-blue thermally activated delayed fluorescence with an unconventional electron rich dibenzothiophene acceptor

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 7, 期 42, 页码 13224-13234

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9tc02175b

关键词

-

资金

  1. Durham University
  2. EU [732103]
  3. Samsung-SAIT
  4. EPSRC [EP/L02621X/1, EP/N028511/1]
  5. EPSRC [EP/P012388/1, EP/N028511/1, EP/L02621X/1] Funding Source: UKRI

向作者/读者索取更多资源

Manipulation of the emission properties of deep-blue emitters exhibiting thermally activated delayed fluorescence (TADF) through molecular design is challenging. We present an effective strategy to probe deeper into the role of localized (LE) and charge transfer (CT) states in the reverse intersystem crossing (RISC) mechanism. In a series of donor-acceptor-donor (D-A-D) blue emitters the dibenzothiophene functionality is used as an unconventional acceptor, while derivatives of 9,10-dihydro-9,9-dimethylacridine are used as electron-donors. tert-Butyl and methoxy substituents in the para-positions of the donor greatly enhance the donor strength, which allows exploration of different energy alignments among CT and LE triplet states. In the tert-butyl substituted compound the low energy triplet is localized on the acceptor unit, with the RISC mechanism (k(RISC) = 0.17 x 10(5) s(-1)) likely involving the mixture of CT and LE triplet states that are separated by less than 0.09 eV. An optimized organic light-emitting diode (OLED) based on the tBu-compound presents a maximum external quantum efficiency of 10.5% and deep-blue emission with Commission Internationale de l'Eclairage coordinates of (0.133, 0.129). However, when methoxy substituents are used, the low-energy triplet state moves away from the emissive (CT)-C-1 singlet increasing the energy gap to 0.24 eV. Despite a larger Delta E-ST, a faster RISC rate (k(RISC) = 2.28 x 10(5) s(-1)) is observed due to the upper-state RISC occurring from the high-energy triplet state localized on the D (or A) units. This work shows the importance of fine-tuning the electronic interactions of the donor and acceptor units to control the TADF mechanism and achieve a deep-blue TADF OLED.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据