4.6 Article

Evaluating Electrocatalysts at Relevant Currents in a Half-Cell: The Impact of Pt Loading on Oxygen Reduction Reaction

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 166, 期 16, 页码 F1259-F1268

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0911915jes

关键词

-

向作者/读者索取更多资源

In this work gas diffusion electrode (GDE) half-cells experiments are proposed as powerful tool in fuel cell catalyst layer evaluation as it is possible to transfer the advantages of fundamental methods like thin-film rotating disk electrode (TF-RDE) such as good comparability of results, dedicated elimination of undesired parameters etc. to relevant potential ranges for fuel cell applications without mass transport limitations. With the developed setup and electrochemical protocol, first experiments on different Pt/C loadings confirm excellent reproducibility. Thereby mass-specific current densities up to 30 A mg(Pt)(-1) at 0.6 V vs. RHE are achieved. From a methodological perspective, good comparability to single cell measurements is obtained after theoretical corrections for temperature and concentration effects. In comparison to previous studies with GDE half-cells, polarization curves without severe mass transport limitations are recorded in a broad potential window. All these achievements indicate that the proposed method can be an efficient tool to bridge the gap between TF-RDE and single cell experiments by providing fast and dedicated insights into the effects of catalyst layers on oxygen reduction reaction performance. This method will enable straightforward and efficient optimization of catalyst layer composition and structure, especially for novel catalysts, thereby contributing to the performance enhancements of fuel cells with reduced Pt loading. (c) The Author(s) 2019. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.0911915jes]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据