4.5 Article

Ceramic Membranes: Materials - Components - Potential Applications

期刊

CHEMBIOENG REVIEWS
卷 6, 期 6, 页码 198-208

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cben.201900022

关键词

Ceramics; Membranes; Membrane reactors; Solid electrolytes

向作者/读者索取更多资源

Gas separation in dense ceramic membranes is driven by the partial pressure gradient across the membrane. The mixed conducting materials most commonly used are single-phase perovskites or fluorites. In recent years, the development of dual-phase systems combining a mixed ion-conducting and electron-conducting phase has increased. The advantage is that a larger number of very stable materials systems is available. The membrane designs currently used include planar, tubular, hollow-fiber, and honeycomb membranes. Each of these designs has specific advantages and disadvantages, depending on the application. Innovative joining concepts are also often needed due to the high temperatures involved. These usually involve the use of glass-ceramic sealants or reactive metal brazes. Applications focus either on the separation of gases alone, i.e., the supply of oxygen or hydrogen, or on membrane reactors. In membrane reactors, a chemical reaction occurs on one or both sides of the membrane in addition to gas separation. The supply of gases is of potential interest for power plants, for the cement, steel, and glass industries, for the medical sector, and for mobile applications. Membrane reactors can be used to produce base chemicals or synthetic fuels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据