4.7 Article

Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy

期刊

DIABETOLOGIA
卷 59, 期 2, 页码 379-389

出版社

SPRINGER
DOI: 10.1007/s00125-015-3796-0

关键词

Albuminuria; Diabetic nephropathy; Glomerular basement membrane; NADPH oxidase 4; Podocyte; Reactive oxygen species

资金

  1. National Health & Medical Research Council of Australia (NHMRC)
  2. JDRF Program/Project Grant
  3. Diabetes Australia Research Trust
  4. FP7 framework programme
  5. NHMRC Senior Research Fellowship
  6. Marie Curie International Reintegration Grant
  7. ERC Advanced Investigator Grant
  8. Dutch Kidney Foundation

向作者/读者索取更多资源

Aims/hypothesis Changes in podocyte morphology and function are associated with albuminuria and progression of diabetic nephropathy. NADPH oxidase 4 (NOX4) is the main source of reactive oxygen species (ROS) in the kidney and Nox4 is upregulated in podocytes in response to high glucose. We assessed the role of NOX4-derived ROS in podocytes in vivo in a model of diabetic nephropathy using a podocyte-specific NOX4-deficient mouse, with a major focus on the development of albuminuria and ultra-glomerular structural damage. Methods Streptozotocin-induced diabetes-associated changes in renal structure and function were studied in male floxedNox4 and podocyte-specific, NOX4 knockout (podNox4KO) mice. We assessed albuminuria, glomerular extracellular matrix accumulation and glomerulosclerosis, and markers of ROS and inflammation, as well as glomerular basement membrane thickness, effacement of podocytes and expression of the podocyte-specific protein nephrin. Results Podocyte-specific Nox4 deletion in streptozotocin-induced diabetic mice attenuated albuminuria in association with reduced vascular endothelial growth factor (VEGF) expression and prevention of the diabetes-induced reduction in nephrin expression. In addition, podocyte-specific Nox4 deletion reduced glomerular accumulation of collagen IV and fibronectin, glomerulosclerosis and mesangial expansion, as well as glomerular basement membrane thickness. Furthermore, diabetes-induced increases in renal ROS, glomerular monocyte chemoattractant protein-1 (MCP-1) and protein kinase C alpha (PKC-alpha) were attenuated in podocyte-specific NOX4-deficient mice. Conclusions/interpretation Collectively, this study shows the deleterious effect of Nox4 expression in podocytes by promoting podocytopathy in association with albuminuria and extracellular matrix accumulation in experimental diabetes, emphasising the role of NOX4 as a target for new renoprotective agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据