4.8 Article

High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 12, 期 11, 页码 3390-3399

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ee02228g

关键词

-

资金

  1. National Key Research and Development Program of China [2018YFB0703604]
  2. National Natural Science Foundation of China (NSFC) [51632010, 51572282, 51972324]
  3. Youth Innovation Promotion Association CAS [2019253]
  4. National Science Fund for Distinguished Young Scholars [51725102]

向作者/读者索取更多资源

Combining high thermoelectric (TE) performance, excellent mechanical properties, and good thermal stability, half-Heusler materials show great potential in real applications, such as industrial waste heat recovery. However, the materials synthesis technology developed in the laboratory scale environment cannot fulfil the requirements of massive device fabrication. In this work, a batch synthesis utilizing the self-propagating high-temperature synthesis (SHS) method was used to prepare state-of-the-art n-type Zr0.5Hf0.5NiSn0.985Sb0.015 and p-type Zr0.5Hf0.5CoSb0.8Sn0.2 half-Heusler alloys. Due to the nonequilibrium reaction process, dense dislocation arrays were introduced in both n-type and p-type materials, which greatly depressed the lattice thermal conductivity. As a consequence, the zT values of samples cut from ingots weighing a few hundreds of grams compared favorably with those prepared from few gram laboratory size pellets. Based on the high TE performance, a three-dimensional finite element model encompassing all relevant parameters was applied to optimize the topological structures of both a half-Heusler single-stage module and a half-Heusler/Bi2Te3 segmented module. The optimized modules attained record-high conversion efficiencies of 9.6% and 12.4% for the single-stage and the segmented module, respectively. The work documents a comprehensive processing of novel TE materials culminating in the assembly of efficient TE modules. As such, it paves the way for widespread commercial applications of TE power generation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据