4.2 Article

Room temperature synthesis and binding studies of solution-processable histamine-imprinted microspheres

期刊

JOURNAL OF MOLECULAR RECOGNITION
卷 31, 期 1, 页码 -

出版社

WILEY
DOI: 10.1002/jmr.2659

关键词

frontal analysis capillary electrophoresis; histamine; microspheres; photochemical polymerization; processable; thermal polymerization

资金

  1. Commission on Higher Education

向作者/读者索取更多资源

Accurate quantification of histamine levels in food and in biological samples is important for monitoring the quality of food products and for the detection of pathophysiological conditions. In this study, solution processable histamine-imprinted microspheres were synthesized at 30 degrees C via dilute free radical phototochemical polymerization technique using ethylene glycol dimethacrylate (EGDMA) as the crosslinker and methacrylic acid (MAA) as the monomer. The processability of the resulting polymer is dictated by the monomer feed concentration (eg, 4 wt% 80:20 EGDMA:MAA formulation) and solvent (acetonitrile). Whereas, the particle size is influenced by the monomer feed concentration, the presence of template molecule, and independent of the crosslinker content. Evaluation of the binding performance of the photochemically imprinted polymers (PCP) with different crosslinker content (80 and 90 wt%) indicated that the selective binding capacity was notably higher in PCP-80 (N= 16.0 mol/g) compared to PCP-90 (N= 10.1 mol/g) when analyzed via frontal analysis capillary electrophoresis (FACE) using Freundlich isotherm. In addition, PCP-80 microspheres are more selective toward histamine than conventional thermal polymers (CTP-80) prepared at 60 degrees C in the presence of structural analogs such as histidine, imidazole, and tryptamine under cross-rebinding and competitive conditions. These results demonstrated that histamine-selective imprinted polymers can be obtained readily using room temperature photochemical polymerization where these materials can be subsequently used as recognition element for optical-based histamine sensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据