4.4 Article

Selective detection of cyanogen halides by BN nanocluster: a DFT study

期刊

JOURNAL OF MOLECULAR MODELING
卷 23, 期 4, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00894-017-3312-1

关键词

Electronic properties; Gas sensor; Nanostructure; Boron nitride; DFT

向作者/读者索取更多资源

The electronic sensitivity and adsorption behavior toward cyanogen halides (X-CN; X = F, Cl, and Br) of a B12N12 nanocluster were investigated by means of density functional theory calculations. The X-head of these molecules was predicted to interact weakly with the BN cluster because of the positive s-hole on the electronic potential surface of halogens. The X-CN molecules interact somewhat strongly with the boron atoms of the cluster via the N-head, which is accompanied by a large charge transfer from the X-CN to the cluster. The change in enthalpy upon the adsorption process (at room temperature and 1 atm) is about -19.2, -23.4, and -30.5 kJ mol(-1) for X = F, Cl, and Br, respectively. The LUMO level of the BN cluster is largely stabilized after the adsorption process, and the HOMO-LUMO gap is significantly decreased. Thus, the electrical conductivity of the cluster is increased, and an electrical signal is generated that can help to detect these molecules. By increasing the atomic number of X, the signal will increase, which makes the sensor selective for cyanogen halides. Also, it was indicated that the B12N12 nanocluster benefits from a short recovery time as a sensor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据