4.7 Article

4-O′-methylhonokiol protects from alcohol/carbon tetrachloride-induced liver injury in mice

期刊

JOURNAL OF MOLECULAR MEDICINE-JMM
卷 95, 期 10, 页码 1077-1089

出版社

SPRINGER
DOI: 10.1007/s00109-017-1556-y

关键词

Alcohol; Liver; Cannabinoids; Methylhonokiol; Therapy

资金

  1. Swiss Foundation for Alcohol Research

向作者/读者索取更多资源

Alcoholic liver disease (ALD) is a leading cause of liver cirrhosis, liver cancer, and related mortality. The endocannabinoid system contributes to the development of chronic liver diseases, where cannabinoid receptor 2 (CB2) has been shown to have a protecting role. Thus, here, we investigated how CB2 agonism by 4'-O-methylhonokiol (MHK), a biphenyl from Magnolia grandiflora, affects chronic alcohol-induced liver fibrosis and damage in mice. A combination of alcohol (10% vol/vol) and CCl4 (1 ml/kg) was applied to C57BL/6 mice for 5 weeks. MHK (5 mg/kg) was administered daily, and liver damage assessed by serum AST and ALT levels, histology, gene, and protein expression. Endocannabinoids (ECs) and related lipid derivatives were measured by liquid chromatography and mass spectrometry (LC-MS) in liver tissues. In vitro, MHKwas studied in TGF beta 1-activated hepatic stellate cells (HSC). MHK treatment alleviated hepatic fibrosis, paralleled by induced expression of matrix metalloproteinases (MMP)-2, -3, -9, and -13, and downregulation of CB1 mRNA. Necrotic lesions and hepatic inflammation were moderately improved, while IL-10 mRNA increased and IFN gamma, Mcl-1, JNK1, and RIPK1 normalized by MHK. Hepatic anandamide (AEA) and related N-acetylethanolamines (NAEs) were elevated in MHK group, whereas fatty acid synthase and diacylglycerol O-acyltransferase 2 expression reduced. In vitro, MHK prevented HSC activation and induced apoptosis via induction of bak1 and bcl-2. To conclude, MHK revealed hepatoprotective effects during alcohol-induced liver damage through the induction of MMPs, AEA, and NAEs and prevention of HSC activation, indicating MHK as a potent therapeutic for liver fibrosis and ALD. Key Messages Methylhonokiol improves liver damage and survival. Methylhonokiol reduces hepatic fibrosis and necroinflammation. Methylhonokiol prevents myofibroblast activation and induces apoptosis. Methylhonokiol upregulates endocannabinoids and related N-acylethanolamines. Methylhonokiol contributes to lipid hydrolysis via PPAR alpha/gamma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据