4.6 Article

Flexible high-efficiency CZTSSe solar cells on stainless steel substrates

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 7, 期 43, 页码 24891-24899

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta08265d

关键词

-

资金

  1. Korea Institute of Energy Technology Evaluation and Planning (KETEP)
  2. Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea [20173010012980]
  3. Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) - Ministry of Science and ICT [2016M1A2A2936781]

向作者/读者索取更多资源

Stainless steel (SS) foil is made of abundant materials and is a durable and flexible substrate, but the efficiency of a solar cell on SS foil deteriorates via the diffusion of impurities from the SS substrate into a Cu2ZnSn(S,Se)(4) (CZTSSe) absorber layer. In this work, the properties of the diffusion barrier for CZTSSe solar cells is investigated by X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), and scanning electron microscopy (SEM). The industrially relevant oxide materials ZnO and SiO2 are used as diffusion barriers against impurities. The formation of a ZnSe reaction with Se degrades the barrier properties of the ZnO barrier layer. As a result, ZnO fails to act as a diffusion barrier, and Fe is observed in the absorber layer. On the other hand, the intrinsic diffusion barrier properties of SiO2 are superior to those of ZnO, and SiO2 is a stable diffusion barrier even after selenization. Therefore, SiO2 was applied to flexible solar cells, and a power conversion efficiency of 10.30%, the highest efficiency for CZTSSe on SS foil, was obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据