4.6 Article

Substoichiometric ultrathin zirconia films cause strong metal-support interaction

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 7, 期 43, 页码 24837-24846

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta08438j

关键词

-

资金

  1. Austrian Science Fund (FWF) [F4505]

向作者/读者索取更多资源

The strong metal-support interaction (SMSI) leads to substantial changes of the properties of an oxide-supported catalyst after annealing under reducing conditions. The common explanation is the formation of heavily reduced, ultrathin oxide films covering metal particles. This is typically encountered for reducible oxides such as TiO2 or Fe3O4. Zirconia (ZrO2) is a catalyst support that is difficult to reduce and therefore no obvious candidate for the SMSI effect. In this work, we use inverse model systems with Rh(111), Pt(111), and Ru(0001) as supports. Contrary to expectations, we show that SMSI is encountered for zirconia. Upon annealing in ultra-high vacuum, oxygen-deficient ultrathin zirconia films (approximate to ZrO1.5) form on all three substrates. However, Zr remains in its preferred charge state of 4+, as electrons are transferred to the underlying metal. At high temperatures, the stability of the ultrathin zirconia films depends on whether alloying of Zr and the substrate metal occurs. The SMSI effect is reversible; the ultrathin suboxide films can be removed by annealing in oxygen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据