4.7 Article

A non-enzymatic glucose sensor based on CuO-nanostructure modified carbon ceramic electrode

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 248, 期 -, 页码 425-431

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2017.10.087

关键词

CuO; Glucose; Non-enzymatic; Nanocomposite; Sol-gel; Carbon ceramic material

资金

  1. Higher Education Commission, Pakistan (HEC) [458/Fedral/NRPU/RD/HEC/2014]
  2. Ministry of Science and Technology Pakistan [1623/Fedral/PC1/RD/MOST/2012]

向作者/读者索取更多资源

Mesoporous silica-graphite composite (SiO2/C-graphite) was synthesized by the sol-gel technique. The surface area (S-BET = 98.93 m(2)/g), pore volume (0.30 cm(3)/g) and pore size (12.16 nm) were characterized by BET. The novelty of this work lays in the fabrication of material in which ceramic material (SiO2/C-graphite) was decorated with copper oxide (CuO) nanostructure. SEM images revealed material compactness without phase segregation and EDX mapping showed a homogenous structure. Pressed disk electrode fabricated with SiO2/C/CuO nanocomposite material was evaluated as an amperometric non-enzymatic glucose sensor in 0.1 M NaOH solution. The linear response range, sensitivity, detection limit, and quantification limit were 0.0220.0 mmol L-1, 0.06 mu mol L-1, 472 mu A mmol(-1) L-1 cm(-2), and 0.76 mmol L-1, respectively. The electrode response time is < 1 s with the addition of 0.02 mmol L-1 glucose. The electrode is chemically stable, exhibits rapid and excellent sensitivity and does not show any interference from coexisting species present in the blood samples. The proposed sensor repeatability was assessed as 1.9% RSD for ten measurements of 13.0 mmol L-1 glucose solution. The sensor tested to ascertain glucose in blood serum showed to be a promising tool for the future evolution of non-enzymatic glucose sensors. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据