4.5 Article

Adsorption of NO2 molecules on armchair phosphorene nanosheet for nano sensor applications - A first-principles study

期刊

JOURNAL OF MOLECULAR GRAPHICS & MODELLING
卷 75, 期 -, 页码 365-374

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jmgm.2017.06.008

关键词

Phosphorene; NO2; Nanosheet; Molecular device; Density of states

向作者/读者索取更多资源

The electronic and NO2 adsorption properties of hydrogenated armchair phosphorene nanosheet device is investigated through density functional theory (DFT) and non-equilibrium Green's function method (NEGF). The armchair phosphorene nanosheet is used for the detection of NO2 gas in phosphorene molecular device. The DOS spectrum demonstrates the change in peak maxima due to transfer of electrons between NO2 gas and phosphorene base material. The change in the peak amplitude is observed along the valance band as well as in the conduction band in the transmission spectrum of phosphorene device. I-V characteristics support the change in the current upon adsorption of NO2 gas molecule on phosphorene molecular device. Using formation energy, structural stability of phosphorene nanosheet has been studied. The adsorption properties of NO2 on phosphorene nanosheet have also been investigated with the help of adsorption energy, Mulliken charge and Bader charge analysis. In order to ascertain the selectivity of NO2 gas along phosphorene molecular device in the ambient condition, the adsorption behavior of O-2 and CO2 is also studied. The findings of the present work confirm that phosphorene molecular device can be used as a NO2 gas sensor and also the influence of Al substitution in phosphorene nanosheet device is explored and reported. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据