4.5 Article

The effect of PKA-mediated phosphorylation of ryanodine receptor on SR Cat2+ leak in ventricular myocytes

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.yjmcc.2017.01.015

关键词

Ca2+ spark; Cardiomyocyte; Protein kinase A; Protein phosphatases; Ryanodine receptor; Sarcoplasmic reticulum Ca2+ leak

资金

  1. National Institutes of Health Grants [HL130231, HL62231, HL80101, HL101235]
  2. Leducq Foundation

向作者/读者索取更多资源

Functional impact of cardiac ryanodine receptor (type 2 RyR or RyR2) phosphorylation by protein kinase A (PKA) remains highly controversial. In this study, we characterized a functional link between PICA-mediated RyR2 phosphorylation level and sarcoplasmic reticulum (SR) Ca2+ release and leak in permeabilized rabbit ventricular myocytes. Changes in cytosolic [Ca2+] and intra-SR [Ca2+](SR) were measured with Fluo-4 and Fluo-5N, respectively. Changes in RyR2 phosphorylation at two PICA sites, serine-2031 and -2809, were measured with phospho-specific antibodies. cAMP (10 mu M) increased Ca2+ spark frequency approximately two -fold. This effect was associated with an increase in SR Ca2+ load from 0.84 to 1.24 mM. PICA inhibitory peptide (PKI; 10 mu M) abolished the cAMP-dependent increase of SR Ca2+ load and spark frequency. When SERCA was completely blocked by thapsigargin, cAMP did not affect RyR2-mediated Ca2+ leak. The lack of a cAMP effect on RyR2 function can be explained by almost maximal phosphorylation of RyR2 at serine-2809 after sarcolemma permeabilization. This high RyR2 phosphorylation level is likely the consequence of a balance shift between protein kinase and phosphatase activity after permeabilization. When RyR2 phosphorylation at serine-2809 was reduced to its basal level (i.e. RyR2 phosphorylation level in intact myocytes) using kinase inhibitor staurosporine, SR Ca2+ leak was significantly reduced. Surprisingly, further dephosphorylation of RyR2 with protein phosphatase 1 (PP1) markedly increased SR Ca2+ leak. At the same time, phosphorylation of RyR2 at serine 2031 did not significantly change under identical experimental conditions. These results suggest that RyR2 phosphorylation by PICA has a complex effect on SR Ca2+ leak in ventricular myocytes. At an intermediate level of RyR2 phosphorylation SR Ca2+ leak is minimal. However, complete dephosphorylation and maximal phosphorylation of RyR2 increases SR Ca2+ leak. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据