4.3 Article

The effect of X-ray micro computed tomography image resolution on flow properties of porous rocks

期刊

JOURNAL OF MICROSCOPY
卷 266, 期 1, 页码 69-88

出版社

WILEY
DOI: 10.1111/jmi.12521

关键词

Image pixel size; micro-CT; permeability; porosity; specific surface area; tortuosity

资金

  1. Asahi Glass Research Grant
  2. Riset Desentralisasi ITB

向作者/读者索取更多资源

The study of digital rock physics has seen significant advances due to the development of X-ray micro computed tomography scanning devices. One of the advantages of using such a device is that the pore structure of rock can be mapped down to the micrometre level in three dimensions. However, in providing such high-resolution images (low voxel size), the resulting file sizes are necessarily large (of the order of gigabytes). Lower image resolution (high voxel size) produces smaller file sizes (of the order of hundreds of megabytes), but risks losing significant details. This study describes the effect of the image resolution obtained by means of hardware-based and software-based approach. Four samples of porous rock were scanned using a SkyScan 1173 High Energy Micro-CT. We found that acquisition using increased pixel binning of the camera (hardware-based resizing) significantly affects the calculated physical properties of the samples. By contrast, voxel resizing by means of a software-based approach during the reconstruction process yielded less effect on the porosity and specific surface area of the samples. However, the decreasing resolution of the image obtained by both the hardware-based and the software-based approaches affects the permeability significantly. We conclude that simulating fluid flow through the pore space using the Lattice Boltzmann method to calculate the permeability has a significant dependency on the image resolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据