4.6 Article

Enhancing quantum transduction via long-range waveguide-mediated interactions between quantum emitters

期刊

PHYSICAL REVIEW A
卷 100, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.100.053843

关键词

-

资金

  1. European Union via European Research Council [306576]
  2. Danish Council for Independent Research - Natural Sciences (FNU)
  3. Danish National Research Foundation (Center of Excellence Hy-Q) [DNRF139]

向作者/读者索取更多资源

Efficient transduction of electromagnetic signals between different frequency scales is an essential ingredient for modern communication technologies as well as for the emergent field of quantum information processing. Recent advances in waveguide photonics have enabled a breakthrough in light-matter coupling, where individual two-level emitters are strongly coupled to individual photons. Here we propose a scheme that exploits this coupling to boost the performance of transducers between low-frequency signals and optical fields operating at the level of individual photons. Specifically, we demonstrate how to engineer the interaction between quantum dots in waveguides to enable efficient transduction of electric fields coupled to quantum dots. Owing to the scalability and integrability of the solid-state platform, our transducer can potentially become a key building block of a quantum internet node. To demonstrate this, we show how it can be used as a coherent quantum interface between optical photons and a two-level system like a superconducting qubit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据