4.6 Article

Thermal radiation in systems of many dipoles

期刊

PHYSICAL REVIEW B
卷 100, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.100.205422

关键词

-

资金

  1. National Science Foundation Graduate Research Fellowship Program [DGE-1650044]
  2. US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0018369]

向作者/读者索取更多资源

Systems of many nanoparticles or volume-discretized bodies exhibit collective radiative properties that could be used for enhanced, guided, or tunable thermal radiation. These are commonly treated as assemblies of point dipoles with interactions described by Maxwell's equations and thermal fluctuations correlated by the fluctuation-dissipation theorem. Here, we demonstrate the equivalence of different theories for these systems and provide a complete derivation of many-dipole thermal radiation, showing that the correct use of the fluctuation-dissipation theorem depends on the definitions of fluctuating and induced dipole moments. We formulate a method to calculate the diffusive radiative thermal conductivity of arbitrary collections of nanoparticles; this allows the comparison of thermal radiation to other heat-transfer modes and across different material systems. We calculate the radiative thermal conductivity of ordered and disordered arrays of SiC and SiO2 nanoparticles and show that thermal radiation can significantly contribute to thermal transport in these systems, because packed nanoparticles have low phonon thermal conductivity. We demonstrate that the radiative heat transfer strongly depends on the materials and geometrical arrangement of the nanoparticle array, and we verify our calculations by comparison to the exact solution for a one-dimensional particle chain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据