4.2 Article

Reducing extreme ultraviolet mask three-dimensional effects by alternative metal absorbers

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JMM.16.4.041002

关键词

extreme ultraviolet mask absorber; mask three-dimensional effects; absorber characterization; rigorous mask three-dimensional lithography simulation

资金

  1. Electronic Component Systems for European Leadership Undertaking [662338]
  2. European Union's Horizon research and innovation program

向作者/读者索取更多资源

Over the recent years, extreme ultraviolet (EUV) lithography has demonstrated the patterning of ever-shrinking feature sizes (enabling the N7 technology node and below), whereas the EUV mask has remained unaltered, using a 70-nm tantalum (Ta)-based absorber. This has led to experimentally observed mask three-dimensional (M3D) effects at the wafer level, which are induced by the interaction between the oblique incident EUV light and the patterned absorber with typical thickness values on the order of several wavelengths. We exploit the optical properties of the absorber material of the EUV mask as an M3D mitigation strategy. Using rigorous lithographic simulations, we screen potential single-element absorber materials for their optical properties and optimal thickness for minimum best focus variation through pitch at the wafer level. In addition, the M3D mitigation by absorber material is evaluated by process window comparison of foundry N5-specific logic clips. To validate the rigorous simulation predictions and test the processing feasibility of the alternative absorber materials, we have selected the candidate single elements nickel and cobalt for an experimental evaluation on wafer substrates. We present the film characterization as well as the first patterning tests of these single-element candidate absorber materials. (c) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据